1. Friedman LM, Furberg CD, DeMets DL, Reboussin DM, Granger CB. Fundamentals of clinical trials. 5th ed. New York, NY: Springer New York; 2015.

2. Evans SR, Ting N. Fundamental concepts for new clinical trialists. Boca Raton: CRC Press, Taylor & Francis Group; 2016.

3. Harrell FE. Musings on multiple endpoints in RCTs. Statistical thinking [Internet]. 2018 [cited 2018 Feb 10];Available from:

4. Teixeira-Pinto A, Normand S-LT. Correlated bivariate continuous and binary outcomes: Issues and applications. Statistics in Medicine [Internet] 2009 [cited 2019 Jan 14];28:1753–73. Available from:

5. Leon AR de, Wu B. Copula-based regression models for a bivariate mixed discrete and continuous outcome. Statistics in Medicine [Internet] 2011 [cited 2018 Oct 5];30:175–85. Available from:

6. Catalano PJ, Ryan LM. Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association 1992;87:651–8.

7. Cox DR, Wermuth N. Response models for mixed binary and quantitative variables. Biometrika 1992;79:441–61.

8. Molenberghs G, Geys H, Buyse M. Evaluation of surrogate endpoints in randomized experiments with mixed discrete and continuous outcomes. Statistics in Medicine [Internet] 2001 [cited 2019 Jan 26];20:3023–38. Available from:

9. Olkin I, Tate RF. Multivariate correlation models with mixed discrete and continuous variables. The Annals of Mathematical Statistics [Internet] 1961 [cited 2019 Jan 26];32:448–65. Available from:

10. Cherubini U, Luciano E, Vecchiato W. Copula methods in finance. Hoboken, NJ: John Wiley & Sons; 2004.

11. Fermanian J-D, Scaillet O. Some statistical pitfalls in copula modeling for financial applications. SSRN Electronic Journal [Internet] 2004 [cited 2019 Jan 16];Available from:

12. Ibragimov R, Prokhorov A. Heavy tails and copulas: Topics in dependence modelling in economics and finance. New Jersey: World Scientific; 2017.

13. Joe H. Dependence modeling with copulas. Boca Raton: CRC Press, Taylor & Francis Group; 2015.

14. Costa MJ, Drury T. Bayesian joint modelling of benefit and risk in drug development. Pharmaceutical Statistics [Internet] 2018 [cited 2018 Mar 15];Available from:

15. Meester SG, MacKay J. A parametric model for cluster correlated categorical data. Biometrics [Internet] 1994 [cited 2019 Jan 26];50:954–63. Available from:

16. Sklar A. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 1959;8:229–31.

17. Genest C, Nešlehová J. A primer on copulas for count data. ASTIN Bulletin [Internet] 2007 [cited 2018 Aug 13];37:475–515. Available from:

18. Denuit M, Lambert P. Constraints on concordance measures in bivariate discrete data. Journal of Multivariate Analysis [Internet] 2005 [cited 2019 Jan 16];93:40–57. Available from:

19. Niewiadomska-Bugaj M, Kowalczyk T. On grade transformation and its implications for copulas. Brazilian Journal of Probability and Statistics 2005;19:125–37.

20. Rüschendorf L. On the distributional transform, sklar’s theorem, and the empirical copula process. Journal of Statistical Planning and Inference [Internet] 2009 [cited 2019 Jan 16];139:3921–7. Available from:

21. Schweizer B, Wolff EF. On nonparametric measures of dependence for random variables. The Annals of Statistics [Internet] 1981 [cited 2019 Jan 26];9:879–85. Available from:

22. Hofert M. Elements of copula modeling with r. 1st edition. New York, NY: Springer Berlin Heidelberg; 2018.

23. Nadarajah S, Afuecheta E, Chan S. A compendium of copulas. Statistica [Internet] 2018 [cited 2019 Feb 5];Vol 77:No 4 (2017). Available from:

24. Hoff P. Extending the rank likelihood for semiparametric copula estimation. The Annals of Applied Statistics [Internet] 2007 [cited 2018 Oct 12];1:265–83. Available from:

25. Wu J, Wang X, Walker SG. Bayesian nonparametric inference for a multivariate copula function. Methodology and Computing in Applied Probability [Internet] 2014 [cited 2018 Oct 12];16:747–63. Available from:

26. Ning S, Shephard N. A nonparametric bayesian approach to copula estimation. arXiv:1702.07089 [stat] [Internet] 2017 [cited 2018 Sep 6];Available from:

27. Joe H, Xu JJ. The estimation method of inference functions for margins for multivariate models. The University of British Columbia [Internet] 1996 [cited 2019 Feb 6];Available from:

28. Craiu VR, Sabeti A. In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes. Journal of Multivariate Analysis [Internet] 2012 [cited 2018 Sep 27];110:106–20. Available from:

29. Yuan Y, Yin G. Bayesian phase i/II adaptively randomized oncology trials with combined drugs. The Annals of Applied Statistics [Internet] 2011 [cited 2018 Jul 26];5:924–42. Available from:

30. Smith MS, Khaled MA. Estimation of copula models with discrete margins via bayesian data augmentation. Journal of the American Statistical Association [Internet] 2012 [cited 2018 Oct 12];107:290–303. Available from:

31. Smith MS. Bayesian approaches to copula modelling [Internet]. In: Damien P, Dellaportas P, Polson NG, Stephens DA, editors. Bayesian theory and applications. Oxford University Press; 2013 [cited 2019 Jan 25]. pages 336–58.Available from:

32. Acar EF, Craiu RV, Yao F. Statistical testing of covariate effects in conditional copula models. Electronic Journal of Statistics [Internet] 2013 [cited 2018 Sep 27];7:2822–50. Available from:

33. Levi E, Craiu RV. Gaussian process single index models for conditional copulas. arXiv:1603.03028 [stat] [Internet] 2016 [cited 2018 Sep 27];Available from:

34. Fermanian J-D, Lopez O. Single-index copulas. Journal of Multivariate Analysis [Internet] 2018 [cited 2018 Sep 27];165:27–55. Available from:

35. Shih JH, Louis TA. Inferences on the association parameter in copula models for bivariate survival data. Biometrics [Internet] 1995 [cited 2018 Oct 23];51:1384–99. Available from:

36. Wang W. Estimating the association parameter for copula models under dependent censoring. Journal of the Royal Statistical Society: Series B (Statistical Methodology) [Internet] 2003 [cited 2018 Oct 23];65:257–73. Available from:

37. He W, Lawless JF. Flexible maximum likelihood methods for bivariate proportional hazards models. Biometrics [Internet] 2003 [cited 2019 Jan 23];59:837–48. Available from:

38. Romeo JS, Tanaka NI, Pedroso-de-Lima AC. Bivariate survival modeling: A bayesian approach based on copulas. Lifetime Data Analysis [Internet] 2006 [cited 2019 Jan 23];12:205–22. Available from:

39. Fu H, Wang Y, Liu J, Kulkarni PM, Melemed AS. Joint modeling of progression-free survival and overall survival by a bayesian normal induced copula estimation model. Statistics in Medicine [Internet] 2013 [cited 2018 Oct 23];32:240–54. Available from:

40. Lai X, Zee BC-Y. Mixed response and time-to-event endpoints for multistage single-arm phase II design. Trials [Internet] 2015 [cited 2019 Jan 4];16. Available from:

41. Weber EM, Titman AC. Quantifying the association between progression-free survival and overall survival in oncology trials using kendall’s tau: Correlation between progression-free survival and overall survival. Statistics in Medicine [Internet] 2018 [cited 2018 Oct 17];Available from:

42. Eluru N, Paleti R, Pendyala RM, Bhat CR. Modeling injury severity of multiple occupants of vehicles: Copula-based multivariate approach. Transportation Research Record: Journal of the Transportation Research Board [Internet] 2010 [cited 2019 Jan 27];2165:1–11. Available from:

43. Madsen L, Fang Y. Joint regression analysis for discrete longitudinal data. Biometrics [Internet] 2011 [cited 2018 Oct 12];67:1171–5. Available from:

44. Wu B, Leon AR de. Gaussian copula mixed models for clustered mixed outcomes, with application in developmental toxicology. Journal of Agricultural, Biological, and Environmental Statistics [Internet] 2014 [cited 2019 Jan 11];19:39–56. Available from:

45. Kwak M. Estimation and inference of the joint conditional distribution for multivariate longitudinal data using nonparametric copulas. Journal of Nonparametric Statistics [Internet] 2017 [cited 2019 Jan 4];29:491–514. Available from:

46. Kwak M. Estimation and inference on the joint conditional distribution for bivariate longitudinal data using gaussian copula. Journal of the Korean Statistical Society [Internet] 2017 [cited 2019 Jan 4];46:349–64. Available from:

47. Ganjali M, Baghfalaki T. A copula approach to joint modeling of longitudinal measurements and survival times using monte carlo expectation-maximization with application to AIDS studies. Journal of Biopharmaceutical Statistics [Internet] 2015 [cited 2018 Oct 12];25:1077–99. Available from:

48. Kürüm E, Jeske DR, Behrendt CE, Lee P. A copula model for joint modeling of longitudinal and time-invariant mixed outcomes: Joint modeling of longitudinal and time-invariant mixed outcomes. Statistics in Medicine [Internet] 2018 [cited 2018 Jul 9];1–13. Available from:

49. Ding W. Copula regression models for the analysis of correlated data with missing values. 2015;

50. Gomes M, Radice R, Camarena Brenes J, Marra G. Copula selection models for non-gaussian outcomes that are missing not at random: Copula selection models for non-normal data. Statistics in Medicine [Internet] 2019 [cited 2019 Jan 6];38:480–96. Available from:

51. Krupskii P, Joe H. Factor copula models for multivariate data. Journal of Multivariate Analysis [Internet] 2013 [cited 2019 Jan 15];120:85–101. Available from:

52. Tan BK, Panagiotelis A, Athanasopoulos G. Bayesian inference for the one-factor copula model. Journal of Computational and Graphical Statistics [Internet] 2018 [cited 2018 Sep 18];1–19. Available from:

53. Smith M, Min A, Almeida C, Czado C. Modeling longitudinal data using a pair-copula decomposition of serial dependence. Journal of the American Statistical Association [Internet] 2010 [cited 2018 Oct 12];105:1467–79. Available from:

54. Min A, Czado C. Bayesian inference for multivariate copulas using pair-copula constructions. Journal of Financial Econometrics 2010;8:511–46.

55. Gruber LF, Czado C. Bayesian model selection of regular vine copulas. Bayesian Analysis [Internet] 2017 [cited 2018 Aug 24];Available from:

56. Barthel N, Geerdens C, Czado C, Janssen P. Dependence modeling for recurrent event times subject to right‐censoring with d‐vine copulas. Biometrics [Internet] 2018 [cited 2018 Dec 17];Available from:

57. Nelsen RB. An introduction to copulas. 2nd ed. New York: Springer; 2006.

58. Hofert M, Kojadinovic I, Maechler M, Yan J. Copula: Multivariate dependence with copulas [Internet]. 2016. Available from:

59. Stan Development Team. RStan: The r interface to stan [Internet]. 2018. Available from:

60. Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. Biometrics [Internet] 2004 [cited 2018 Oct 23];60:684–93. Available from:

61. Yin G, Yuan Y. Bayesian dose finding in oncology for drug combinations by copula regression. Journal of the Royal Statistical Society: Series C (Applied Statistics) [Internet] 2009 [cited 2018 Jul 17];58:211–24. Available from:

62. Tao Y, Liu J, Li Z, Lin J, Lu T, Yan F. Dose-finding based on bivariate efficacy-toxicity outcome using archimedean copula. PLoS ONE [Internet] 2013 [cited 2018 Jul 26];8:e78805. Available from:

63. Cunanan K, Koopmeiners JS. Evaluating the performance of copula models in phase i-II clinical trials under model misspecification. BMC Medical Research Methodology [Internet] 2014 [cited 2018 Jul 26];14. Available from:

64. Denman N, McGree J, Eccleston J, Duffull S. Design of experiments for bivariate binary responses modelled by copula functions. Computational Statistics & Data Analysis [Internet] 2011 [cited 2018 Oct 5];55:1509–20. Available from:

65. Perrone E, Müller W. Optimal designs for copula models. Statistics [Internet] 2016 [cited 2018 Aug 9];50:917–29. Available from:

66. Deldossi L, Osmetti SA, Tommasi C. Optimal design to discriminate between rival copula models for a bivariate binary response. TEST [Internet] 2018 [cited 2018 Aug 9];Available from:

67. Conlon A, Taylor J, Elliott M. Surrogacy assessment using principal stratification and a gaussian copula model. Statistical Methods in Medical Research [Internet] 2017 [cited 2019 Jan 4];26:88–107. Available from:

68. Renfro LA, Shi Q, Sargent DJ, Carlin BP. Bayesian adjusted r2 for the meta-analytic evaluation of surrogate time-to-event endpoints in clinical trials. Statistics in Medicine [Internet] 2012 [cited 2018 Oct 23];31:743–61. Available from:

69. Song PX-K, Li M, Yuan Y. Joint regression analysis of correlated data using gaussian copulas. Biometrics [Internet] 2009 [cited 2018 Oct 12];65:60–8. Available from:

70. Gunawan D, Khaled MA, Kohn R. Mixed marginal copula modeling. Journal of Business & Economic Statistics [Internet] 2018 [cited 2018 Oct 12];1–11. Available from: