DEPARTMENT OF BIOSTATISTICS VANDERBILT UNIVERSITY

BAYESIAN CUMULATIVE PROBABILITY MODELS FOR CONTINUOUS RESPONSE VARIABLES NATHAN T. JAMES, SCM FRANK E. HARRELL, PHD BRYAN E SHEPHERD, PHD

INTRODUCTION

Cumulative Probability Models (CPM) are typically used for ordered categorical outcomes. Why use a Bayesian CPM with a **continuous** outcome?

- 1. Invariant to monotonic transformations
- 2. Models full conditional CDF; estimates of means and quantiles calculated from a single model
- 3. Handles ordered mix of discrete/continuous outcome values, e.g. lower limit of detection
- 4. Inference based on posterior probabilities

MODEL

For observed ordered outcomes $y_1 \leq y_2 \leq \cdots \leq y_n$ the Cumulative Probability Model is:

$$G[P(Y \le y_i | X)] = \alpha_i - \beta^T X$$

where *X* is a matrix of covariates and $G(\cdot)$ a link function. The posterior distribution for (α, β)

$$\propto p(\boldsymbol{\alpha}, \boldsymbol{\beta}) \prod_{i=1}^{n} [G^{-1}(\alpha_i - \beta x_i) - G^{-1}(\alpha_{i-1} - \beta x_i)]$$

Where α_i are ordered cutpoints which categorize the outcome ($\alpha_0 = -\infty$ and $\alpha_n = \infty$). For Y with no ties, each category has one observation.

• brms: $\alpha_i \sim t(\nu = 3, \mu = 0, \sigma = 10)$ with ordering constraint

• rstanarm: let π be a simplex variable with $\pi_i =$ $P(y = y_i | \bar{x})$ and Dirichlet pdf $\propto \prod_{i=1}^n \pi_i^{\gamma_i - 1}$ then $\alpha_i = G^{-1} \left(\sum_{j=1}^i \pi_j \right)$. By default, $\gamma_i =$ $1 \forall i \text{ (i.e., prior count of } 1 \text{ in each bin)}$ • Flat (improper) priors used for β with both

Example

- and $\varepsilon \sim Logistic(0,1)$

Example (cont.) ε either Normal, Logistic, or *Extreme Value* (*type 2*) and CPM fit using probit, logit, or loglog link

- With moderate sample size, misspecification
- Can account for uncer-

VANDERBILT UNIVERSITY DEPARTMENT OF BIOSTATISTICS

INTERPRETATION AND PERFORMANCE

• α_i estimate posterior CDF for X = 0

• β measure association between *X* and *Y*; interpretation depends on link \Rightarrow *ex.* if $G(\cdot)$ is logit link, β are log-odds ratios

• Posterior mean and quantile estimates calculated from posterior conditional CDF

• Data for n = 50 observations generated from $Y = \beta X + \varepsilon$ with $\beta = 3$, $X \sim Bernoulli(0.5)$,

• 10,000 posterior MCMC draws produced using CPM with logit link $[G(p) = \log(\frac{p}{1-p})]$

Q 0

MODEL MISSPECIFICATION

reasonably robust to link function

tainty in link function using a mixture of links

DEPARTMENT OF BIOSTATISTICS VANDERBILT UNIVERSITY

COMPUTATIONAL EFFICIENCY

- brms needs to compile C++ code, rstanarm uses pre-compiled code
- Convergence and speed depends on package and link; symmetric link functions faster than non-symmetric
- For moderate datasets time is approximately linear; in larger datasets compute time increases at a faster rate for brms

CONCLUSIONS

- Bayesian CPMs for continuous outcomes work best for small to moderate datasets
- Using default priors, rstanarm able to fit more link functions and more closely matches true generative model

REFERENCES

- Liu, Qi, et al. "Modeling continuous response variables using ordinal regression." Stat. in Med. 36.27 (2017): 4316-4335.
- Albert, James H., and Siddhartha Chib. "Bayesian analysis of binary and polychotomous response data." JASA 88.422 (1993): 669-679.