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Introduction

I Ordinal Cumulative Probability Model (CPM)
I G [P(Y ≤ yi |X )] = αi − βTX
I yi - ordered, continuous outcome
I X - matrix of covariates
I G (·) - link function

Why use a Bayesian CPM with a continuous outcome?

I Invariant to monotonic transformation of outcome

I Directly model full conditional CDF

I Handles any ordered outcome including mixed
discrete/continuous distributions (e.g., continuous outcome
with lower limit of detection)

I Inference using posterior probabilities
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I αi estimate posterior CDF for X = 0
I β measure association between X and distribution of Y ;

interpretation depends on link function
I Mean and quantiles calculated from posterior distribution of

full conditional CDF using single model

Mean 95% PIs
Q0.75 95%PIs
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I Implemented using brms and rstanarm; both call Rstan

I Different parameterizations; using default priors rstanarm

more accurate in simulations

I Model convergence depends on package and link function
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I brms needs to compile C++ code, rstanarm pre-compiled

I Major differences in computation time based on link function

I For datasets up to ∼ 1000 distinct y values computation time
is approximately linear for both packages; for larger datasets
compute time increases at a faster rate for brms
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I With moderate sample size, reasonably robust to
misspecification of link function

I Uncertainty in link function can be accounted for using a
mixture of links

E[Y|x=0]=0.109

E[Y|x=1]=3.001

95% PIs for E[Y|x]
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E[Y|x=0]=0.107

E[Y|x=1]=2.968

95% PIs for E[Y|x]
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